
Techniques for mapping tasks to machines in heterogeneous
computing systems q

Howard Jay Siegel *, Shoukat Ali

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907-1285, USA

Abstract

Heterogeneous computing (HC) is the coordinated use of di�erent types of machines, net-works, and interfaces to

maximize their combined performance and/or cost-e�ectiveness. HC systems are becoming a plausible technique for

e�ciently solving computationally intensive problems. The applicability and strength of HC systems are derived from

their ability to match computing needs to appropriate resources. In an HC system, tasks need to be matched to ma-

chines, and the execution of the tasks must be scheduled. The goal of this invited keynote paper is to: (1) introduce the

reader to some of the di�erent distributed and parallel types of HC environments; and (2) examine some research issues

for HC systems consisting of a network of di�erent machines. The latter purpose is pursued by considering: (1) the

quanti®cation of heterogeneity; (2) the characterization of techniques for mapping (matching and scheduling) tasks on

such systems; (3) an example HC resource management system; and (4) static and dynamic heuristics for mapping tasks

to machines in such HC systems. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In general, heterogeneous computing (HC) is
the coordinated use of di�erent types of machines,
networks, and interfaces to maximize their com-
bined performance and/or cost-e�ectiveness [23,9].
HC systems are becoming a plausible technique for
e�ciently solving computationally intensive prob-
lems [12]. The applicability and strength of HC

systems are derived from their ability to match
computing needs to appropriate resources. As
machine architectures become more advanced to
obtain higher peak performance, only a fraction of
this performance may be achieved on many real
tasks because a typical task may have various
subtasks with di�erent architectural requirements.
When such a task is executed on a given machine,
the machine may spend much of its time executing
subtasks for which it is unsuited [15].

One way to exploit an HC environment is to
decompose a task into subtasks, where each sub-
task is computationally well suited to a single
machine architecture, but di�erent subtasks may
have di�erent computational needs (e.g., [29]).
These subtasks may share stored or generated
data, creating the potential for inter-machine de-
pendencies and data transfer overhead. Once the
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subtasks are obtained, each subtask is assigned to
a machine (matching). Then the subtasks and any
inter-machine data transfers are ordered (schedul-
ing) so as to optimize some objective function. The
overall problem of matching and scheduling is
referred to as mapping. The objective function can
be the overall completion time of the task or a
more complex function of multiple requirements.

In some cases, a collection of independent tasks
must be mapped, instead of a set of interdependent
subtasks. Such an independent set of tasks is called
a meta-task [14]. An example of meta-task map-
ping is the mapping of an arbitrary set of inde-
pendent tasks from di�erent users waiting to
execute on a heterogeneous suite of machines.
Each task in the meta-task may have associated
requirements, such as a deadline and a priority.

One broad objective of the HC community is to
design a management system for HC resources
(machines, networks, data repositories, etc.) [23].
One important issue within this arena is the design
of a mapping system that makes good decisions.
Such a system, which may be called a scheduling
advisor, has to be provided with an objective
function that it tries to optimize. Current research
involves formulating an optimization criterion that
will be a function of a set of quality of service
(QoS) attributes that are likely to be requested by
the tasks expected in a given HC environment [21].
This optimization criterion also will serve as a
measure of the performance of the various sched-
uling approaches that might be available to the
community, and also for that of the resource
management approaches in general.

The scheduling advisor might have to choose
between static and dynamic approaches to the
mapping of tasks. Static approaches are likely to
su�ce if the tasks to be mapped are known be-
forehand, and if the predictions about the HC
resources are likely to be accurate. Dynamic ap-
proaches to mapping are likely to be more helpful
if the HC system status can change randomly, and
if the tasks that are supposed to be mapped cannot
be determined beforehand. The general problem of
developing an optimal matching of tasks to hosts
is NP-hard [10]. The goal of this invited keynote
paper is to: (1) introduce the reader to some of the
di�erent distributed and parallel types of HC en-

vironments; and (2) examine some research issues
for HC systems consisting of a network of di�erent
machines. The latter purpose is pursued by con-
sidering: (1) the quanti®cation of heterogeneity; (2)
the characterization of techniques for mapping
tasks on such systems; (3) an example HC resource
management system; and (4) static and dynamic
heuristics for mapping tasks to machines in such
HC systems.

Section 2 brie¯y describes some broad classes of
HC systems. In Section 3, `mixed-machine' HC
systems are further classi®ed and elaborated. Sec-
tion 4 characterizes heuristics for mapping inde-
pendent tasks onto a class of HC systems. An
example system for managing resources in HC
systems is discussed in Section 5. Sections 6 and 7
de®ne and compare some dynamic and static
mapping heuristics, respectively. Section 8 con-
cludes the paper.

2. Parallel and distributed heterogeneous computing

systems

There is a great variety of types of parallel and
distributed heterogeneous computing systems.
In this section, three broad classes are brie¯y
described: mixed mode, multi-mode, and mixed-
machine. The rest of the paper focuses on mixed-
machine systems.

A mixed-mode HC system refers to a single
parallel processing system, whose processors are
capable of executing in either the synchronous
SIMD or the asynchronous MIMD mode of par-
allelism, and can switch between the modes at the
instruction level with negligible overhead [27].
Thus, a mixed-mode machine is temporally heter-
ogeneous, in that it can operate in di�erent modes
at di�erent times. This permits di�erent modes of
parallelism to be used to execute various portions
of a program. The goal of mixed-mode HC sys-
tems is to provide in a single machine the best
attributes of both the SIMD and the MIMD
models. PASM, TRAC, OPSILA, Triton, and
EXECUBE are examples of mixed-mode HC sys-
tems that have been prototyped [27].

There are various trade-o�s between the SIMD
and MIMD modes of parallelism, and mixed-
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mode machines can exploit these by matching each
portion of a given program with the mode that
results in the best overall program performance.
Studies have shown that a mixed-mode machine
may outperform a single-mode machine with the
same number of processors for a given program
(e.g., [11]).

Multi-mode HC is similar to mixed-mode HC
in the sense that multiple modes of computation
are provided within one machine. However, it is
di�erent because all modes of computation can be
used simultaneously. An example multi-mode ar-
chitecture is the image understanding architecture
(IUA) [30]. In IUA, heterogeneity is incorporated
by having multiple processing layers, where each
layer provides a di�erent form and mode of com-
putation. Two levels of MIMD and one level of
SIMD processors are included in this system.

Thus, mixed-mode and multi-mode systems
represent one extreme of HC, where the hetero-
geneity resides in a single machine. For more
about such systems, see [9].

In mixed-machine HC systems, a heterogeneous
suite of machines is interconnected by high-speed
links to function as a metacomputer [20] or a grid
[12]. (The grid refers to a large-scale pooling of
resources to provide dependable and inexpensive
access to high-end computational capabilities [12].)
A mixed-machine HC system coordinates the ex-
ecution of various components of a task or a meta-
task on di�erent machines within the system to
exploit the di�erent architectural capabilities
available, and achieve increased system perfor-
mance [23].

3. Degrees and classes of mixed-machine heteroge-

neity

In a mixed-machine HC system, each task can
have a di�erent execution time on each machine. A
heuristic is employed to map tasks onto the ma-
chines in an HC system. The assumption that es-
timates of expected task execution times on each
machine in the HC suite are known is commonly
made when studying mapping heuristics for HC
systems (e.g., [16]). (Approaches for doing this
estimation based on task pro®ling and analytical

benchmarking are discussed in [23].) These esti-
mates can be supplied before a task is submitted
for execution, or at the time it is submitted. The
mapper contains an expected time to compute
(ETC) matrix that contains the expected execution
times of a task on all machines, for all the tasks
that are expected to arrive for service. In an ETC
matrix, the elements along a row indicate the ex-
ecution times of a given task on di�erent machines,
and those along a column give the execution times
of di�erent tasks on a given machine. The average
variation along the rows is referred to as the ma-
chine heterogeneity; this is the degree to which the
machine execution times vary for a given task,
averaged over all the tasks [2]. Similarly, the av-
erage variation along the columns is referred to as
the task heterogeneity; this is the degree to which
the task execution times vary for a given machine,
averaged over all the machines in the system [2].

Based on the above idea, four categories were
proposed for the ETC matrix in [2]: (a) high task
heterogeneity and high machine heterogeneity
(HiHi), (b) high task heterogeneity and low ma-
chine heterogeneity (HiLo), (c) low task hetero-
geneity and high machine heterogeneity (LoHi),
and (d) low task heterogeneity and low machine
heterogeneity (LoLo). The ETC matrix can be
further classi®ed into two classes, consistent and
inconsistent [2], which are orthogonal to the pre-
vious classi®cations. For a consistent ETC matrix,
if machine mx has a lower execution time than
machine my for task tk, then the same is true for
any task ti. The consistent case represents the sit-
uation where there is a de®nite ordering among the
compute power of the machines in the suite. In
inconsistent ETC matrices, the relationship among
the execution times for di�erent tasks on di�erent
machines is random. The inconsistent case repre-
sents a mix of task computational requirements
and machine capabilities such that no ordering as
that in the consistent case is possible. A combi-
nation of these two cases, which may be more
realistic in many environments, is the semi-con-
sistent ETC matrix, which is an inconsistent
matrix with a consistent submatrix. As an exam-
ple, in a given semi-consistent ETC matrix, 50% of
the tasks and 25% of the machines may de®ne a
consistent sub-matrix. These degrees and classes of
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mixed-machine heterogeneity can be used to
characterize HC environments.

4. Characterizing mapping heuristics

The mapping of tasks and meta-tasks, and the
scheduling of communications in HC environ-
ments, are active, growing areas of research. A
taxonomy of mapping heuristics is useful to re-
searchers as it allows meaningful comparison
among di�erent mapping heuristics used in di�er-
ent HC environments for di�erent applications.
The Purdue HC Taxonomy [6] is a three part
classi®cation that attempts to classify mapping
heuristics according to the features of the appli-
cations being mapped (i.e., application model),
characteristics of the hardware that the mapper is
targeting (i.e., HC hardware platform model), and
mapping strategies (i.e., mapper model).

The Purdue HC Taxonomy classi®es the appli-
cation being mapped on the basis of latter's size,
divisibility into (possibly dependent) subtasks,
communication patterns, quality of service require-
ments, etc. The taxonomy distinguishes among
hardware platforms on the basis of communica-
tion time estimates between di�erent machines,
possibility of concurrency in sends and receives,
machine architecture and heterogeneity, intercon-
nection network, etc. Similarly, mapping heuristics
are classi®ed on the basis of their ability to adapt
to changes in HC system, support various appli-
cation models, consider subtask data dependencies
and communication times, fault tolerance, etc.

A researcher also can use the taxonomy to ®nd
mapping heuristics that use similar target platform
and application models. The mapping heuristics
found for similar models can then possibly be
adapted or developed further to better solve the
mapping problem under consideration.

5. MSHN: An example resource management system

5.1. Overview

A resource management system (RMS) views
the set of heterogeneous machines that it manages
as a single virtual machine, and attempts to give

the user a location-transparent view of the virtual
machine [24]. The RMS should be able to provide
the users a higher level of overall performance
than would be available from the users' local sys-
tem alone.

The management system for heterogeneous
networks (MSHN ± pronounced `mission') [18] is
an RMS for use in HC environments. MSHN is a
collaborative research e�ort that includes the
Naval Postgraduate School, NOEMIX, Purdue
University, and the University of Southern Cali-
fornia. It builds on SmartNet, an operational
scheduling framework and system for managing
resources in an HC environment developed at
NRaD [13].

The technical objective of the MSHN project is
to design, prototype, and re®ne a distributed RMS
that leverages the heterogeneity of resources and
tasks to deliver the requested QoS. To this end,
MSHN is investigating: (1) the accurate, task-
transparent determination of the end-to-end status
of resources; (2) the identi®cation of di�erent op-
timization criteria and how non-determinism and
the granularity of application and platform models
(as outlined by the Purdue HC Taxonomy [6])
a�ect the performance of various mapping heu-
ristics that optimize those criteria; (3) the deter-
mination of how security should be incorporated
within components as well as how to account for
security as a QoS attribute; and (4) the identi®ca-
tion of problems inherent in application and sys-
tem characterization.

5.2. MSHN architecture

Fig. 1 shows the conceptual architecture of
MSHN. As can be seen in the ®gure, every task
running within MSHN makes use of the MSHN
client library (CL) that intercepts the task's oper-
ating system calls. The scheduling advisor (SA)
determines which set of resources a newly arrived
task (or equivalently, a newly started process)
should use. (Using the terminology from Section 1,
the SA is a mapper.) The resource status server
(RSS) is a quickly changing repository that
maintains information concerning the current
availability of resources. Information is stored in
the RSS as a result of updates from both the CL
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and the SA. The CL can update the RSS as to the
currently perceived status of resources, which
takes into account resource loads due to processes
other than those managed by MSHN. The re-
source requirements database (RRD) is responsi-
ble for maintaining information about the
resources that are required to execute a particular
task. The RRD's current source of information
about a task is the data collected by the CL from
the previous runs of the task. The RRD has the
ability to maintain very ®ne grain experiential in-
formation collected by the CL, and it is hoped
that, in future, it can also be populated with in-
formation from smart compilers and directives
from task writers.

When the CL intercepts a request to execute a
new task, it invokes a scheduling request for that
task on the SA (assuming that the task requests to
be scheduled through the SA). The SA queries
both the RRD and the RSS. It uses the received
information, along with an appropriate search
heuristic, to determine the resources that should
host the new process. Then, the SA returns the
decision to the CL, which, in turn, requests exe-
cution of that process through the appropriate

MSHN Daemon. The MSHN Daemon invokes
the application on its machine.

As a process executes, the CL updates both the
RSS and the RRD with the current status of the
resources and the requirements of the process.
Meanwhile, the SA establishes call-backs with
both the RRD and the RSS to notify the SA if
either the status of the resources has signi®cantly
changed, or the actual resource requirements are
substantially di�erent from what was initially re-
turned from the RRD. In either case, if it appears
that the assigned resources can no longer deliver
the required QoS, the application must be termi-
nated or adapted (e.g., use an alternative imple-
mentation that may deliver less QoS, but requires
less resources). Upon receipt of a call-back, the SA
might require that several of the applications
adapt so that more of them can receive their re-
quested QoS.

5.3. Research issues for MSHN's scheduling advisor

The formulation of an optimization criterion
for mapping tasks in complex HC environments is
currently being researched in the HC community.
Resource allocation involves attempting to solve
heuristically an NP-complete optimization prob-
lem. MSHN is developing a criterion that maxi-
mizes a weighted sum of values that represents the
bene®ts of delivering the required and desired QoS
(including security, priorities, and preferences for
versions), within the speci®ed deadlines, if any.
MSHN attempts to account for both preferences
for various versions and priorities. That is, when it
is impossible to deliver all of the most preferred
information within the speci®ed deadlines due to
insu�cient resources, MSHN's optimization cri-
terion is designed to favor delivering the most
preferred version to the highest priority applica-
tions. In MSHN's optimization criterion, dead-
lines can be simple or complex. That is, sometimes
a user could use a piece of information only if it is
received before a speci®c time. At other times, a
user would like to associate a more general bene®t
function, which would tell how bene®cial the in-
formation is to user, depending on when it is re-
ceived. Further information about MSHN's
optimization criterion can be found in [21].

Fig. 1. High-level block diagram of the functional architecture

of MSHN.
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The relative performance of search algorithms
is another research issue. The MSHN team has
obtained extensive results identifying the regions
of heterogeneity where certain heuristics perform
better than others for maximizing throughput by
minimizing the time at which the last application,
of a set of applications, should complete (e.g.,
[2,7,22]). Re-targeting of these heuristics to other
optimization criteria is currently underway. Ad-
ditionally, MSHN team members have performed
extensive research into accounting for dependen-
cies among subtasks (e.g., [3±5,29]). Sections 6 and
7 outline some of the MSHN research in the static
and dynamic mapping of meta-tasks in HC
environments.

6. Dynamic heuristics for mapping meta-tasks in

HC systems

6.1. Overview

This section describes and compares eight dy-
namic heuristics that can be used in an RMS like
MSHN for mapping meta-tasks [22]. In an HC
system where the tasks to be executed are not
known a priori, dynamic schemes are necessary to
match tasks to machines, and to compute the ex-
ecution order of the tasks assigned to each ma-
chine. A dynamic scheme is also needed in
environments where some machines in the suite
may go o�-line and new machines may come on-
line. These dynamic mapping heuristics are non-
preemptive, and assume that the tasks have no
deadlines or priorities associated with them.

The mapping heuristics can be grouped into
two categories: on-line mode and batch-mode
heuristics. In the on-line mode, a task is mapped
onto a machine as soon as it arrives at the mapper.
In the batch mode, tasks are not mapped onto the
machines as they arrive; instead they are collected
into a set that is examined for mapping at pre-
scheduled times called mapping events. The de®-
nition of a meta-task can now be re®ned as the
independent set of tasks that is considered for
mapping at the mapping events. A meta-task can
include newly arrived tasks (i.e., the ones arriving
after the last mapping event) and ones that were

mapped in earlier mapping events but did not be-
gin execution. While on-line mode heuristics con-
sider a task for mapping only once, batch mode
heuristics consider a task for mapping at each
mapping event until the task begins execution.

The on-line heuristics consider, to varying de-
grees and in di�erent ways, task a�nity for dif-
ferent machines and machine ready times. The
batch heuristics consider these factors, as well as
aging of tasks waiting to execute. The ready time,
rk, of a machine mk is de®ned as the earliest time
that machine is going to be ready after completing
the execution of the tasks that are currently as-
signed to it. It is assumed that each time a task ti

completes on a machine mj a report is sent to the
mapper. Because the heuristics presented here are
dynamic, the expected machine ready times are
based on a combination of actual task execution
times and estimated expected task execution times.
The experiments conducted in [22] to study dy-
namic mapping heuristics model this situation us-
ing simulated actual values for the execution times
of the tasks that have already ®nished their exe-
cution. Also, all heuristics examined in [22] operate
in a centralized fashion on a dedicated suite of
machines; i.e., the mapper controls the execution
of all jobs on all machines in the suite. It is also
assumed that the mapping heuristic is being run on
a separate machine. The next few subsections
condense some discussions and results from [22].

6.2. Background terms and a performance measure
for dynamic mapping heuristics

The expected execution time eij of task ti on
machine mj is de®ned as the amount of time taken
by mj to execute ti given mj has no load when ti is
assigned. The expected completion time cij of task
ti on machine mj is de®ned as the wall-clock time
at which mj completes ti (after having ®nished any
previously assigned tasks). Let m be the total
number of the machines in the HC suite. Let K be
the set containing the tasks that will be used in a
given test set for evaluating heuristics in the study.
Let the arrival time of the task ti be ai, and let the
begin time of ti on mj be bij. From the above
de®nitions, cij � bij � eij. Let ci be cij, where ma-
chine mj is the one assigned by the mapping
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heuristic to execute task t2. The makespan for the
complete schedule is then de®ned as maxti2K�ci�.
Makespan is a measure of the throughput of the
HC system, and does not measure the quality of
service imparted to an individual task. One other
performance measure is given in [22].

6.3. On-line mode dynamic mapping heuristics

The minimum completion time (MCT) heuristic
assigns each task to the machine that results in
that task's earliest completion time. This causes
some tasks to be assigned to machines that do not
have the minimum execution time for them. The
MCT is a variation of the fast greedy heuristic
from SmartNet [13].

The minimum execution time (MET) heuristic
(a variation of the user directed assignment in [13])
assigns each task to the machine that performs
that task's computation in the least amount of
execution time. This heuristic, in contrast to the
MCT, does not consider machine ready times, and
can cause a severe imbalance in load across the
machines. The main advantage of this method is
its simplicity.

The switching algorithm (SA) heuristic [22] is
motivated by the following observation. The MET
heuristic can potentially create load imbalance
across machines by assigning many more tasks to
some machines than to others, whereas the MCT
heuristic tries to balance the load by assigning
tasks for earliest completion time. The SA heu-
ristic uses the MCT and MET heuristics in a cyclic
fashion depending on the load distribution across
the machines. The purpose is to have a heuristic
with the desirable properties of both the MCT and
the MET.

Let the maximum ready time over all machines
in the suite be rmax, and the minimum ready time
be rmin. Then, the load balance index across the
machines is given by p � rmin=rmax. The parameter
p can have any value in the interval [0, 1]. Two
threshold values, pl (low) and ph (high), for the
ratio p are chosen in [0, 1] such that pl < ph. Ini-
tially, the value of p is set to 0.0. The SA heuristic
begins mapping tasks using the MCT heuristic
until the value of load balance index increases to at
least ph. After that point in time, the SA heuristic

begins using the MET heuristic to perform task
mapping. This causes the load balance index to
decrease. When it reaches pl, the SA heuristic cycle
continues.

The KPB (k-percent best) heuristic [22] con-
siders only a subset of machines while mapping a
task. The subset is formed by picking the (km/100)
best machines based on the execution times for the
task, where 100=m6 k6 100. The task is assigned
to a machine that provides the earliest completion
time in the subset. If k � 100, then the KPB heu-
ristic is reduced to the MCT heuristic. If
k � 100=m, then the KPB heuristic is reduced to
the MET heuristic. A `good' value of k maps a task
to a machine only within a subset formed from
machines computationally superior for that par-
ticular task.

The opportunistic load balancing (OLB) heu-
ristic (used for comparisons in [13]) assigns a task
to the machine that becomes ready next. It does
not consider the execution time of the task when
mapping it onto a machine. If multiple machines
become ready at the same time, one machine is
arbitrarily chosen.

6.4. Batch mode dynamic mapping heuristics

In the batch mode, meta-tasks are mapped after
prede®ned intervals. For the ith mapping event,
the meta-task Mi is mapped at time si, where i P 0.
The initial meta-task, M0, consists of all the tasks
that arrived prior to time s0, i.e., M0 �
ftj jaj < s0g. The meta-task, Mk, for k > 0, consists
of tasks that arrived after the last mapping event
and the tasks that had been mapped, but did not
start executing, i.e.,

Mk � ftj jskÿ16 aj < skg [ ftj jaj < skÿ1; bj > skg:

The mapping events may be scheduled using
one of the two strategies. The regular time interval
strategy maps the meta-tasks at regular intervals of
time. The ®xed count strategy maps a meta-task Mi

as soon as one of the following two mutually ex-
clusive conditions are met: (a) an arriving task
makes jMij larger than or equal to a predetermined
arbitrary number j, or (b) all tasks have arrived,
and a task completes while the number of tasks
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which yet have to begin is larger than or equal to
j. In this strategy, the length of the mapping in-
tervals will depend on the arrival rate and the
completion rate. The possibility of machines being
idle while waiting for the next mapping event will
depend on the arrival rate, completion rate, m, and
j.

The Min-min heuristic shown in Fig. 2 is based
on the ideas presented in [19], and implemented in
SmartNet [13]. The Min-min heuristic calculates
the minimum completion time for each task in the
meta-task currently being considered. The task
which has the minimum of these completion times
is assigned the corresponding machine, and that
machine's ready time is updated. This assigned
task is removed from the meta-task and the pro-
cedure is repeated.

Min-min begins by scheduling the tasks that
change the expected machine ready time status by
the least amount that any assignment could. If
tasks ti and tk are contending for a particular
machine mj, then Min-min assigns mj to the task
(say ti) that will change the ready time of mj less.
This increases the probability that tk will still have
its earliest completion time on mj, and shall be
assigned to it. Because at t � 0, the machine which
®nishes a task earliest is also the one that executes
it fastest, and from thereon the Min-min heuristic
changes machine ready time status by the least
amount for every assignment, the percentage of
tasks assigned their ®rst choice (on basis of ex-
pected execution time) is likely to be higher in
Min-min than with the other batch mode heuris-

tics described in this subsection. The expectation is
that a smaller makespan can be obtained if a larger
number of tasks is assigned to the machines that
not only complete them earliest but also execute
them fastest.

The Max-min heuristic is similar to the Min-
min heuristic given in Fig. 2. It was one of the
heuristics implemented in SmartNet [13]. Once the
machine that provides the earliest completion time
is found for every task, the task tk that has the
maximum earliest completion time is determined
and then assigned to the corresponding machine.
The matrix c and vector r are updated and the
above process is repeated with tasks that have not
yet been assigned a machine.

The Max-min is likely to do better than the
Min-min heuristic in the cases where there are
many more shorter tasks than the long tasks. For
example, if there is only one long task, Max-min
will execute many short tasks concurrently with
the long task. The resulting makespan might just
be determined by the execution time of the long
task in these cases. Min-min, however, ®rst ®nishes
the shorter tasks (which may be more or less
evenly distributed over the machines) and then
executes the long task, increasing the makespan
compared to the Max-min.

The Su�erage heuristic is based on the idea that
better mappings can be generated by assigning a
machine to a task that would `su�er' most in terms
of expected completion time if that particular
machine is not assigned to it [22]. Fig. 3 shows the
Su�erage heuristic. Let the su�erage value of a
task ti be the di�erence between its second earliest
completion time (on some machine my) and its
earliest completion time (on some machine mx).
That is, using mx will result in the best completion
time for ti, and using my the second best. The
Su�erage heuristic attempts to assign each task
based on the MCT. When there is a con¯ict for a
machine, the task with the higher su�erage value is
assigned to that machine.

6.5. Sample comparisons for dynamic mapping
heuristics

For many heuristics, there are control parame-
ter values and/or control function speci®cationsFig. 2. The Min-min heuristic.
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that can be selected for a given implementation.
For the studies here, such values and speci®cations
were selected based on experimentation and/or
information in the literature. The above is also
true for the static mapping heuristics presented in
Section 7. In Figs. 4 and 5, vertical lines at the tops

of bars show minimum and maximum values for
the 50 trials, while the bars show the averages.

In Fig. 4, the on-line mode heuristics are com-
pared based on makespan for inconsistent HiHi
heterogeneity. The KPB provides the minimum
makespan, closely followed by the MCT. Fig. 5
shows the makespan for batch heuristics under
similar conditions. The Su�erage heuristic gives
the smallest makespan, followed by the Min-min.
When the task arrival rate is relatively higher, the
batch method outperformed the on-line method in
these studies. The reader is referred to [22] for a
detailed description of the experiments, further
analysis, and more results.

7. Static heuristics for mapping meta-tasks in HC

systems

7.1. Overview

This section describes and compares 11 static
heuristics that can be used in an RMS like MSHN
for mapping meta-tasks to machines. In a general
HC system, static mapping schemes are likely to
make better mapping decisions because more time
can be devoted for the computation of schedules
o�-line than on-line. However, static schemes re-
quire that the set of tasks to be mapped be known
a priori, and that the estimates of expected
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execution times of all tasks on all machines be
known with reasonable accuracy. A meta-task, in
the context of static heuristics, is the set of all in-
dependent tasks that are being considered for
mapping. Like the dynamic heuristics in Section 6,
these static mapping heuristics are non-preemp-
tive, assume that the tasks have no deadlines or
priorities associated with them, and assume a
dedicated HC system.

7.2. Description of static heuristics

This subsection consists of brief de®nitions of
the eleven static meta-task mapping heuristics that
are studied and fully described in [7]. The basic
terms and the performance measure de®ned for the
dynamic heuristics in Sections 6.1 and 6.2 hold for
static heuristics as well, except for the terms that
characterize the dynamic nature of the dynamic
heuristics, e.g., ®xed count strategy.

The descriptions below assume that the ma-
chine ready times are updated after each task is
mapped. For cases when tasks can be considered
in an arbitrary order, the order in which the tasks
appeared in the ETC matrix was used.

The static opportunistic load balancing (OLB)
heuristic is similar to its dynamic counterpart ex-
cept that it assigns tasks in an arbitrary order,
instead of order of arrival. The user directed as-
signment (UDA) heuristic [1] works in the same
way as the MET heuristic except that it maps tasks
in an arbitrary order instead of order of arrival.
The fast greedy heuristic [1] is the same as the
MCT, except that it maps tasks in an arbitrary
order instead of their order of arrival. The static
Min-min heuristic works in the same way as the
dynamic Min-min, except a meta-task contains all
the tasks in the system. The static Max-min heu-
ristic works in the same way as the dynamic Max-
min, except a meta-task has all the tasks in the
system. The greedy heuristic performs both the
static Min-min and static Max-min heuristics, and
uses the better solution [1,13].

The genetic algorithm (GA) is a popular tech-
nique used for searching large solution spaces. The
version of the heuristic used for this study was
adapted from [29] for this particular HC environ-
ment. Fig. 6 shows the steps in a general GA [28].

The GA implemented here operates on a pop-
ulation of 200 chromosomes (possible mappings)
for a given meta-task. Each chromosome is a jKj
vector, where position i �06 i < t� is the machine
to which the task ti has been mapped. The initial
population is generated using two methods: (a) 200
chromosomes randomly generated from a uniform
distribution, or (b) one chromosome that is the
Min-min solution and 199 random chromosomes.
The latter method employs the seeding of the
population with a Min-min chromosome. In this
implementation, the GA executes eight times (four
times with initial populations from each method),
and the best of the eight mappings is used as the
®nal solution. The makespan serves as the ®tness
value for evaluation of the evolution.

Simulated annealing (SA) is an iterative tech-
nique that considers only one possible solution
(mapping) for each meta-task at a time. This so-
lution uses the same representation for a solution
as the chromosome for the GA. SA uses a proce-
dure that probabilistically allows poorer solutions
to be accepted to attempt to obtain a better search
of the solution space (e.g., [25]). This probability is
based on a system temperature that decreases for
each iteration. As the system temperature `cools',
it is more di�cult for currently poorer solutions to
be accepted.

The genetic simulated annealing (GSA) heuris-
tic is a combination of the GA and SA techniques
[26]. In general, GSA follows procedures similar to
the GA outlined above. However, for the selection
process, GSA uses the SA cooling schedule and
system temperature, and a simpli®ed SA decision
process for accepting or rejecting new chromo-
somes.

The Tabu search keeps track of the regions
of the solution space which have already been

Fig. 6. General procedure for a genetic algorithm.
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searched so as not to repeat a search near these
`Tabu' areas [17]. A solution (mapping) uses the
same representation as a chromosome in the GA
approach. Heuristic searches are conducted within
a region, and the best solution for that region is
stored. Then, a new region, not on the tabu list, is
searched. When a stopping criterion is reached, the
best solution among regions is selected.

The ®nal heuristic in the comparison study is
known as the A* heuristic. A* is a tree-based
search that has been applied to many other task
allocation problems (e.g., [8,25]). The technique
used here is similar to the one described in [8]. As
the tree grows, intermediate nodes represent par-
tial solutions (a subset of tasks are assigned to
machines), and leaf nodes represent ®nal solutions
(all tasks are assigned to machines). The partial
solution of a child node has one more task ta

mapped than the parent node. Each parent node
can be replaced by its m children, one for each
possible mapping of ta. The number of nodes al-
lowed in the tree is bounded to limit mapper exe-
cution time. Less promising nodes are deleted, and
the more promising nodes are expanded. The
process continues until a leaf node (complete
mapping) is reached.

7.3. Sample comparisons for static mapping heuris-
tics

Figs. 7 and 8 show comparisons of the 11 static
heuristics using makespan as the criterion in two
di�erent heterogeneity environments. Vertical lines

at the top of bars show minimum and maximum
values for the 100 trials, while the bars show the
averages. It can be seen that, for the parameters
used in this study, GA gives the smallest makespan
for both inconsistent HiHi and inconsistent HiLo
heterogeneities. The reader is referred to [7] for
more results, details, and discussions.

8. Conclusions

Heterogeneous computing is a relatively new
research area for the computer ®eld. Interest in
such systems continues to grow, both in the re-
search community and in the user community.

Some of the di�erent types of HC systems that
have been built were discussed here, including
mixed-mode, multi-mode, and mixed-machine.
Mixed-machine HC was then focussed upon. A
way to describe di�erent kinds of heterogeneous
environments based on characteristics of the ETC
matrix was presented. The structure of a taxonomy
for heuristics for mapping tasks onto mixed-ma-
chine HC systems was reviewed. As an example of
the design of a resource management system for
such HC environments, the high-level functional
architecture of MSHN was provided. Finally, a
sampling of heuristic techniques for dynamic and
static mapping of independent tasks onto ma-
chines in an HC suite was given. The de®nition of
each of these heuristics was summarized, and some
example comparison results were shown. For all of
these topics, references were cited where muchFig. 7. Inconsistent, high task, high machine heterogenity.

Fig. 8. Inconsistent, high task, low machine heterogenity.
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greater details can be found. The reader is en-
couraged to pursue these references to learn more.
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